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In this paper, we analyse the development of initially small, periodic, voidage distur- 
bances in gas-fluidized beds. The one-dimensional model was proposed by Needham 
& Merkin (1983), and Crighton (1991) showed that weakly nonlinear waves satisfied 
a perturbed Korteweg-de Vries or KdV equation. Here, we take periodic cnoidal 
wave solutions of the KdV equation and follow their evolution when the perturbation 
terms are amplifying. Initially, all such waves grow, but at a later stage a rescaling 
shows that shorter wavelengths are stabilized in a weakly nonlinear state. Longer 
wavelengths continue to develop and eventually strongly nonlinear solutions are re- 
quired. Necessary conditions for periodic waves are found and matching back onto 
the growing cnoidal waves is possible. It is shown further that these fully nonlinear 
waves also reach an equilibrium state. A comparison with numerical results from 
Needham & Merkin (1986) and Anderson, Sundaresan & Jackson (1995) is then 
carried out. 

1. Introduction 
Fluidized beds are two-phase flow systems used in industry when a large contact 

surface area between solid particles and a fluid is required. The particles are typically 
between 50pm and 1 mm in diameter and lie in a deep layer on a porous plate. Fluid 
is then forced upward through the system with a high enough velocity so that the 
drag on the particles balances gravity. This results in the particles becoming mobile 
and buoyant and the fluidized bed exhibits liquid-like phenomena. Increasing the fluid 
velocity beyond the critical value needed for fluidization leads to the expansion of 
the bed. This is relatively uniform for most liquid-fluidized beds and for gas-fluidized 
beds with very fine particles, although wavy structures exist, indicating the presence 
of instabilities. At higher velocities still, this regime breaks down and gas-fluidized 
beds bubble and resemble a boiling liquid. In very narrow tubes, the bubbling cannot 
occur and instead we have slugging, with alternating horizontal bands of particle-rich 
and depleted regions. These propagate vertically upward by particle raining at the 
interfaces. 

The model used here is one-dimensional, which is appropriate for the study of 
fluidization in narrow tubes, and was suggested by Needham & Merkin (1983) with a 
modification proposed by Harris & Crighton (1994). Many similar models are present 
in the literature, for instance see Jackson (1963a, b),  Garg & Pritchett (1975), Homsy, 
El-Kaissy & Didwania (1980), Foscolo & Gibilaro (1984, 1987). They use the concept 
of interacting continua so that the point variables are averaged over volumes which 
are large compared to particle size and spacing, but small compared to the whole 
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system. This leads to continuum equations for the particles and the fluid which can be 
treated as two, interpenetrating, one-phase fluids with suitable interaction terms. In 
addition, we restrict consideration to gas-fluidized beds as this simplifies the system, 
reducing it to two equations for the particle phase. 

In this paper, we examine the temporal development of vertically travelling, one- 
dimensional periodic wavetrains in gas-fluidized beds. Crighton (1991) looks at the 
linear stability conditions and then derives a weakly nonlinear equation valid on the 
unstable side of the threshold. At leading order, this is the Korteweg-de Vries or KdV 
equation and perturbation terms are amplifying for O( 1) wavelengths but balance or 
dissipate for small wavelengths. Harris & Crighton (1994) examine the amplifying 
case starting with a KdV soliton as an initial condition. The development is followed 
through several weakly nonlinear regimes until it evolves into a fully nonlinear O( 1) 
wave which Crighton (1995) refers to as a ‘voidon’. Here, we perform a similar 
analysis, but begin instead with the periodic cnoidal solution of the KdV equation for 
our initial state. The temporal development of this cnoidal wavetrain is then followed 
in $3.  It is discovered that cnoidal waves of all wavelengths are amplified at first, 
with the smaller wavelengths growing faster. However, these all have a finite-time 
singularity in their amplitude and velocity, which is not physically possible. Near this 
singularity, a rescaling is carried out and it is then found that the shorter wavelengths 
are stabilized at this weakly nonlinear stage. The finite-time singularity, although 
weakened, is still present for the longer wavelengths and they continue to grow until 
they eventually become fully nonlinear. 

In $4, we examine the fully nonlinear periodic solutions and find necessary con- 
ditions for these to exist. We demonstrate that they match back onto the growing 
cnoidal waves in the weakly nonlinear state and also that they equilibrate. Thus, the 
finite-time singularity was an artefact of our weakly nonlinear approximation and 
there is no actual blow-up. 

The case of hindered settling in a dilute suspension is considered briefly in $5. 
The situation is the same as fluidized beds except for a much higher background 
voidage and a different reference frame. The results of our analytical study are then 
compared with numerical computations by Needham & Merkin (1986) and Anderson, 
Sundaresan & Jackson (1995). The former study relates to quasi-steady, periodic 
travelling wave solutions of the full equations. The latter paper is a comprehensive 
investigation following the temporal development of sinusoidal waves into fully 
developed O( 1) solutions for a very similar set of equations. These are found to agree 
well with the analytical results presented here. 

2. Model equations 
The model equations represent mass and momentum conservation in the particle 

phase. It is useful to write them in terms of the averaged vertical particle velocity 
and a voidage fraction 4 (the volume of fluid in unit volume of the two-phase 

mixture). Theoretically, the voidage can vary between 0 and 1, the pure solid and 
pure fluid limits, but in practice, there is a larger lower limit on 4 since there is always 
residual fluid in the spaces between the particles. The state of uniform fluidization is 
given by 

where the voidage fraction and averaged vertical fluid velocity UO are constant and 
there is zero vertical particle velocity. 

4 = 40,  Y =o,  u = uo, (2- 1)  
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We examine the fluidized bed equations in the non-dimensional form 

a4 a 
at ax 

-- + -([l - 4]v) = 0, 

where F 2  = Uo2/gh is the square of a Froude number and R = p,Uoh/ps is a particle- 
phase Reynolds number, with h being a localized, voidage disturbance lengthscale 
and p,, p., being the density and effective viscosity of the particle phase. The index n 
occurs in the Richardson-Zaki relation, which is an experimental correlation relating 
the fluid velocity UO to the voidage fraction 4o (Richardson 1971). It is weakly 
dependent on the Reynolds number of the flow, but here we will assume it is a 
constant lying in the range 3 to 4. The function p s ( 4 )  is a particle pressure and has 
a stabilizing influence. This was omitted in earlier models such as Jackson (1963~)  
and Murray (1965) but in this case the linear stability analysis predicts the bed to be 
unstable at all flow rates, which disagrees with experimental observations. Here we 
set 

so that the particle pressure vanishes in the pure fluid limit when 4 = 1 and becomes 
infinite at close packing at 4 = q5cp when no more fluid can be removed without 
crushing the particles. This is the modification made to Needham & Merkin's (1983) 
model by Harris & Crighton (1994) so that a weakly unstable flow regime could be 
reached by increasing the flow velocity through the stable state. Provided this criterion 
holds, however, the exact form of p s ( 4 )  is not very important as it is only the sign 
of the first two derivatives of the function evaluated at the uniform voidage fraction 
which have an effect on the analysis. For a detailed description of the derivation of 
these equations see Harris & Crighton (1994). 

Experimental results suggest that the Froude number is small and so in later 
calculations, we use the assumption in Needham & Merkin (1983) that 

F << 1, (2.5) 
and treat this as our perturbation parameter in looking at small disturbances from 
the uniform state. A linear stability analysis following Needham & Merkin (1983) 
and Crighton (1991) then yields 

where 4f is the voidage perturbation, 

X = x - mot, a0 = (n + 1)(1 - 40); 
(2.8) 

(2.9) 

2 z = F t  
is a slow timescale and 

- P:(40) = Po > 0. 
As indicated in Needham & Merkin (1983), if Po > a& waves corresponding to all 

wavenumbers are stable for any F ;  whereas if Po < cx;, then there is a band of modes 
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with wavenumbers less than some critical value which 
in weak instabilities and so we examine the situation 

2 8 0  
cIo -Po = F--, 

4 0  

are unstable. We are interested 

(2.10) 

where J0 is a positive O(1) constant and we now take F to be small. Thus, the first 
two terms in (2.6) are at leading order, with the others acting as perturbations. For 
long wavelengths, i.e. X = O(1), the third term dominates those to its right and 
so we have slow growth. The rescaling X = O(F1I3) and z = O(F) retains the first 
two terms at leading order but leads to the third and fifth terms being of the same 
magnitude at the next order. However, the fifth term does not materially alter the 
stability characteristics so that we still have growth. At shorter wavelengths still, 
when X = O(F’/’), the fifth term is the leading-order perturbation with the third and 
fourth terms next. Again, the 4ixx term does not affect the stability but the +hx and 
4:x terms balance so the shorter wavelengths do not grow, as discussed in Harris & 
Crighton (1994). Here, we restrict attention to the growing long wave modes, so we 
consider X to be O(1). 

Eventually a linear approximation ceases to be valid when the wave ampiitude 
becomes too large and we must then consider weakly nonlinear effects. To do this, 
we rescale the equations using 

(2.11) 

(2.12) 

2 /  u = F  U ,  4 = 4 0 + F 2 + ’ ,  
as well as (2.7) and (2.8). This leads to the U(1) approximation 

v’ = -(n + I)@’, 
where 4‘ satisfies 

4: + Po4’4k + Yo4kxx = -Fdo&x 

+F240ao p4:x - (n + l)(4’2)xx] 
-F240P1 [@d2 + 4/4kx] + O(F3>> (2.13) 

and the O(1) constants PO, yo  and PI are given by 

PO = -(n + 1) 2 + n - - , 4 0  
y o  = (n + l)x, PI = p y ( 4 0 )  > 0. (2.14) 

Equation (2.13) contains an additional O(F2) term omitted from Harris & Crighton 
(1994); however, it has no effect on the analysis there as it vanishes in a secularity 
integral. 

In the context of fluidized beds, experimental results by Leva (1959) show that 
values of 4o between 0.4 and 0.5 are suitable for an initially packed bed so that with 
n = 3,  

( i o )  

n 
(2.15) 4o < n+2 
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is satisfied and thus PO > 0. In $5, we briefly examine what happens when Po < 0, 
which is appropriate for hindered settling of a dilute suspension, but for the moment, 
we restrict Po to be positive. 

In (2.13), we have the KdV equation at leading order, with perturbation terms on 
the right-hand side. The first of these is the negative dissipation term present in the 
linearized equation (2.6) and it represents amplification. The O ( F 2 )  terms include 4iX 
which modulate the growth for short wavelengths. 

Here, we are interested in periodic solutions, rather than the solitary wave solutions 
considered in Harris & Crighton (1994). Therefore, as our initial state, we take the 
periodic cnoidal wave solutions of the KdV equation given by 

(2.16) 

where 
y = X - xo - [ 4 ~ 0 t i * ( 2 ~  - 1) + POA]Z (2.17) 

is a travelling wave coordinate, 1, ti and xo are arbitrary constants, cn is the Jacobian 
elliptic function (Abramowitz & Stegun 1964) and m is the parameter of cn which, 
without loss of generality, we take to satisfy 0 < m < 1. 

For a description of the Jacobian elliptic functions in relation to periodic solutions 
of the KdV equation, see Drazin & Johnson (1989). Here, we note that as 

m 4 0, cn(8jm) + cos8, (2.18) 

so this gives a linear wave approximation. As 

m + 1, cn(0lm) -+ sech8, (2.19) 

thus the solution (2.16) tends to the single soliton solution of the KdV equation and 
this is the most nonlinear limit. The amplitude, velocity and wavelength of the cnoidal 
solution all depend on m in different ways. Abramowitz & Stegun (1964) define the 
quarter-period of cn(0lrn) as K(m), so that K ( 0 )  = n/2 and K(1) = co as the soliton 
solution can be thought of as having an infinite wavelength. It can be shown that 
K(m) is a monotonic increasing function of in and we also note that cn2(8jm) actually 
has a period 2K(m) (and not 4K(m)). 

Because of the complicated nature of the m dependence, we choose to keep m 
constant in the analysis which follows. We are interested in disturbances to the 
uniform state 4 = 4 0  and we want this to remain a solution of the equations. 
Therefore, we fix 1 by insisting that the perturbation 4’ has zero mean displacement 
over one wavelength. Thus, we must have 

(2.20) 

This leaves us with the two constants ti and xo and in the next section, we allow them 
to be slowly varying so that we have growing cnoidal waves. 

3. Perturbed Korteweg-de Vries equation 
In this section, we examine the effects on cnoidal waves of including the perturbation 

terms on the right-hand side of equation (2.13). The analysis closely parallels the 
corresponding section in Harris & Crighton (1994), but is given in detail here in order 
that the material is understandable without constant reference to the earlier paper. 
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We now look for an asymptotic expansion for 4’ in powers of F in the form 

4’ = 41 ( X ,  7 ,  T )  + F42(X7 7 ,  T )  + W2), 
where a slower timescale 

T = F z ,  
is introduced to eliminate higher-order secular terms (Leibovich & Seebass 1974; 
Nayfeh 1973). The leading-order solution, q51, is given by the cnoidal wave in (2.16), 
but with IC and xo now allowed to vary on this long timescale T .  This permits the 
possibility of growing solutions and also a phase shift (although this is unimportant). 
The introduction of the timescale T also adds an extra term --F& onto the right- 
hand side of equation (2.13). 

The second-order solution 42 satisfies 

9 4 2  -cl42q + P O ( 4 1 4 Z ) q  + y042qqq = -8041qq - 4 1 T .  ( 3 4  
The condition for 4 2  to exist is given by 

(see Courant & Hilbert 1962) where 6 = ICY.  This is an integral formulation of 
the necessary secularity condition. We can now substitute in for 41 using (2.16) 
remembering that m is fixed, but IC and hence 3, from (2.20) depend on T .  Using the 
result from Appendix A, 

K 
cn26[5mcn4d + 4(1 - 2m)cn2d + 3(m - l)] dd = 0, (3-4) 

to eliminate integrals in cn66, we can simplify (3.3) to give 

where 
2 

f (m) = 3 1: cn4d d6 - [1: cn2d do] , 

K 

g(m) = 2( 1 - m) cn2B d8 + (2m - 1 )  1, cn40 d6, (3.7) 

If we set m = 1, so that K = co and cn6 = sechd, we obtain 

which agrees with the result obtained in the perturbed soliton theory in Harris & 
Crighton (1994). If m = 0, then K = n/2, cnQ = cosd and b = 860/5. Thus the 
amplification rate is greater for m = 0 than for m = 1. In fact, b is a monotonic 
decreasing function of m but is positive for 0 < m < 1 (see figure 1). Thus all the 
periodic waves are amplified and those with shorter wavelengths are amplified faster. 

If we integrate equation (3.5) and set ~ ( 0 )  = 1, then we obtain 
112 

K ( T ) =  (z) , To - T (3.9) 
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FIGURE 1. A graph of the growth rate coefficient h(m). 

where 
1 

To = __ 
2b(m)' 

(3.10) 

Thus we have a finite-time singularity at 7' = To which causes the solution for 4' to 
blow up, which is physically unacceptable. Another effect is to shorten the wavelength 
which is proportional to ~ / K ( T ) .  To see the changes this causes, we must return to 
the full set of equations and rescale the variables near the finite-time singularity using 

(3.11) I - P a ? +  = 7-0 - T ,  2 = F-"(X - x g  - t), 

i.1 = 4yo(2m - 1)k2(?) + flJu, 4 = 4 0  + FZ-'" 4(? 

a t  - F-2"t i;( ?) = F%( T ) ,  I ,  - - 
2 2  

2: = p 2 a  I 
0 ,  

where f, 2, 2, 21, 1, 4' and li' are 0(1) quantities, with 4 being the same as R but with 
i; replacing ti. Substituting these back into (2.2) and (2.3) gives 

- 214; + p,@$; + yo&; = -F1+" [$> + 604;;] 

(3.12) 

Our previous analysis corresponded to a = 0, but we must now consider the regime 
0 < a < 1 and allow the perturbation expansion for 4' to contain non-integral powers 
of F .  For a < 1/3, the O(F1+a) terms form the leading-order perturbations and these 
are precisely the same terms that we retained previously. Thus the amplitude growth 
rate is still given by equation ( 3 . 9  although in rescaled coordinates. When a = 1/3, 
the O(F2-2") terms become the same size as those of O(F'+a).  This is equivalent to 
the rescaling on the linear equation (2.6) needed to make the 4iX and # k X X  terms 
of the same order. In the linear situation, the 4iXx had no significant effect on the 
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FIGURE 2. A plot of d(m) for typical parameter values. 

stability (merely altering the size of some of the coefficients) and the same holds true 
in the weakly nonlinear situation. Thus a change in secularity condition does not 
occur as the O(F2-2a) terms vanish in the compatibility integral (as also happened 
in the soliton case examined in Harris & Crighton 1994). For 1/3 < a < 1/2, the 
asymptotic sequence for 4' is simply reordered, with the O(F1+a) and O(F2-2a) terms 
swopping over and there is no fundamental change in the solution. When a = 1/2, 
the O(F1+a) and 0(F2-')  terms become of the same order (equivalent to the 4kx 
and 4iX being the same order in the linear equation). Now there is a change in the 
secularity condition to 

2~ = b(m)i23 + d(m)C5, (3.13) 
where 

4(2m - 1) - lK cn2%dO} 
-K 

16 
4 m )  = j4oaoYo 

K 

+--- Y o  &,[P1 + 2ao(n + l)] 2[2(2m - 1)2 + 5( 1 - m)m] lK cn49 de 
96 
35 f (m) Po 

3(1-m)(2m- l)-?g(m)] 2K l:cn2%dO}, (3.14) 

and b(m), g(m), f(m) are unchanged from (3.6)-(3.8). 
The function d is monotonic increasing in m, but is negative for small m and 

positive for large m. Using suitable values for 40, n and PI etc., figure 2 shows that 
the change from negative to positive values occurs at m = ml, with ml w 1/2. When 
d < 0, the waves equilibrate at this weakly nonlinear stage as the two terms on the 
right-hand side of (3.13) can balance each other. So, although the shorter wavelengths 
were initially faster growing, they stabilize at this amplitude. However, for m > ml, 
the wave continues to grow and we eventually expect the k5 terms to dominate those 
of c3. Thus with another rescaling, we have 

I Z T l  = d(m)k5. (3.15) 

Figure 3(u-c) shows the amplitude of the wave A = 12yornx2/Po as a function of time 
for m = 0.2,0.5 and 0.8 respectively. The first two of these demonstrate that the wave 
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FIGURE 3. Graphs of the amplitude of the periodic waves against time for different 
values of m :  (a)  m = 0.2, ( b )  m = 0.5, (c) m = 0.8. 
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amplitude equilibrates, whereas the third is in the regime m > ml and shows that 
the amplitude increases beyond the point where the weakly nonlinear approximations 
appply. In this case, a numerical integration of the full equations is required. We 
suggest that there are no further alterations in the secularity condition whilst the 
waves remain weakly nonlinear. Eventually, they become fully nonlinear when a = 1 
and further investigation is then needed to examine the structure and growth of the 
solution. 

4. Finite-amplitude periodic waves 
In this section, we find necessary conditions for fully nonlinear periodic solutions 

to exist. We then show that under these parameter restrictions, the waves can be 
matched back onto the growing cnoidal solutions found in the previous section. This 
justifies our claim that we have found all the matching regions and can follow the 
development of small perturbations through to fully nonlinear disturbances. We also 
prove that the finite-time singularity in the velocity and amplitude found at the weakly 
nonlinear stage is, in fact, spurious and that the fully nonlinear waves tend to an 
equilibrium state. The analysis again follows that for the soliton case in Harris & 
Crighton (1994). 

Upon suitable rescaling for fully nonlinear 0(1) disturbances with 4 = 6, u = G 
and I: a travelling wave coordinate, the original system (2.2) and (2.3) becomes 

(4.1) c& + [( 1 - &I[ = 0, 

A 1  
R 

- (1 - 4) + -6" = F [( 1 - $)(G - c)Gl + p t ( $ ) $ l ]  , (4.2) 

where c is an undetermined velocity and the neglected terms are O(F2) .  Substituting 
in perturbation expansions for 8, 6, 

and integrating (4.1) gives 

as the uniform state, $0 = 40 and 00 = 0, is a solution of the equations. This 
expression for GO can be used to eliminate the particle velocity from the momentum 
equation to yield an equation for the leading-order voidage term $0. Temporarily 
dropping the zero subscripts on 6 and integrating once gives 

where 

and the lower limit g51 of the integration is chosen to be a zero of @. (This differs 
from the lower limit of 40 for solitons.) 
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4 
FIGURE 4. A graph of c ( b )  for h’(4)  = 0, 40 = 0.4, n = 3 

If we set 

$12  = .f ($I? (4.7) 
A 2  

then periodic solutions occur when q5c is positive between two simple zeros of f ( 4 )  
(see Drazin & Johnson 1989). Here, we can just examine the zeros of h ( 4 )  as the effect 
of the (1 - $)4 term in (4.5) merely serves to modify the shape of the graph without 
affecting the qualitative solution. (We must necessarily exclude the case $ = 1, which 
corresponds to pure fluid, in order for equation (4.5) to be valid.) 

Considering h’($), we see that h’(&) = 0 and to find the other turning points of h, 
we rearrange h’(q5) = 0 as an equation for the wave velocity c, so 

A 

This function has a single maximum at 4 = q 5 < ,  where 

provided 

(4.10) 
n 

n + 2  __ > 4 0 .  

Equation (4.10) is identical to the condition > 0 and is realistic in the context of 
fluidized beds. A graph of c as a function of 6 for A’($) = 0 is given in figure 4. 
The relation (4.8) and figure 4 have already been seen in GO, (1993) where oblique 
travelling wave solutions in gas- and liquid-fluidized beds have been examined. It can 
be seen that if 

there are no other turning points of h($) ;  if 
c > Gnn,, 

sI0 < c < c,,,. 
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there are two turning points of h to the right of &; and if 

a o > c > l ,  (4.11) 

there is one turning point on each side of $0. For (4.11) to be possible we need 
a0 = (n  + 1)(1 - 4 0 )  > 1, but this is automatically satisfied when jso > 0. In the case 

a0 > 1 > c > 0, (4.12) 

we have a single turning point to the right of q50 and lastly, for c < 0, there are again 
no other turning points apart from at 4 = $0. 

We note that 

(4.13) 

so that h”($o) is positive if c > c10 and negative if c < ao, giving us minimum and 
maximum turning points of h respectively. We also observe that 

(4.14) 

(4.15) 

Thus possible graphs for h(4 )  for the different ranges of the parameter c are shown 
in figure 5(a-e). 

We need h($) to be positive between two simple zeros around $0 if c > 0 and 
negative if c < 0 (from (4.5)) for periodic solutions about the uniform state. Then it 
is clear that necessary conditions for this are 

a0 > c > 0. (4.16) 

We also require certain other conditions to be satisfied, namely h(40) > 0 and 
h ( 4 j )  < 0 for the turning points 4j on either side of 40. We set & 4u to be the 
nearest zeros of h to 4 0  such that 

41 < 4 0  < 4 u 7  

which gives h(&) > 0 in (4.6) as 41 is the lower limit of the integration. 
Needham & Merkin (1986) examine the same equations, with slightly different 

rescalings (and a different particle pressure but using the definition of PO = -p; ($o)  
so that this agrees with ours). They use the Hopf-bifurcation theorem to show 
that necessary and sufficient conditions for a periodic orbit to bifurcate out of the 
equilibrium point (40 ,O)  in the phase plane (is. the uniform state) are 

(4.17) 

These in fact hold without restricting the Froude number to be small. The first of 
these is identical to (4.16) and the second condition means 6 0  > 0, so that we are 
on the unstable side of the threshold in the linear and weakly nonlinear regimes. 
Therefore there is complete agreement with our criteria. 

a0 > c > 0, a; > Po > 0. 

We examine the expansion for c in the form 

c = a0 + F2-2ac1 + . . . , 
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4 
\ , - ,  

0.2 u 3." 1 .0 

FIGURF 5. Typical graphs of h ( 4 )  for different values of the velocity c: (a)  c > c,,,, 
( h )  c,,, > c > 30, ( c )  CIO > c > 1, ( d )  1 > c > 0, ( e )  c < 0. 

which is valid in the weakly nonlinear situation with cI  given by 
m K 2  I( 

2 
C I  = 4yo(2m - 1 ) ~  - 6yo-- 1, cn20 do, K 

(4.18) 

from (2.17) and (2.20). Thus in order to satisfy (4.16), we expect to have C I  < 0. 
A plot of this is given in figure 6, and so we see that c1 is a monotonic increasing 
function of m which is negative for most of the range, but is positive close to 1. This 
suggests that for m close to 1, the weakly nonlinear cnoidal waves are unstable. Thus 
if the wavelength is too large, we cannot have slowly growing periodic waves and any 
wavetrains of this sort will break up. Anderson er al. (1995) also report indications 
that for very long waves the periodic behaviour does not persist, but instead becomes 
time-dependent without settling into any regular pattern. We note that when C I  < 0, 
the waves travel slower than the linear wave speed xo, and for fixed m they slow down 
as they grow. 

To match the fully nonlinear periodic solutions back onto the growing cnoidal 
waves, we first introduce the timescale 

(4.19) T - To = F'T', 
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FIGURE 6. The function CI plotted against m. 

and allow the wave velocity c to change with T'. The effect of this is to add a term 
F P T f  onto the right-hand side of (4.1) so we have 

c& + [(l - $)GI[ = F&'. (4.20) 

We now use our perturbation expansion (4.3) on (4.20) and (4.2) to find equations 
for 61 and 81. These can be written in the matrix form 

(4.21) 

where the elements in the first matrix are operators and 

a1 = Perf, a 2  = (1 - &)(GO - c ~ o i  + p:tbo)Poi. (4.22) 

A solution ( 1 1 , l 2 )  of the homogeneous adjoint problem to (4.21) is given in Harris & 
Crighton (1994) as 

where 

P = 1 - ($Jn" (1 - 1) (1 + ( n  + 1)(1 - "1) 
P O  

The secularity condition in integral form is then 

(4.23) 

(4.24) 

(4.25) 

where 2L(rn, T' )  is the period of the wave. 
Harris & Crighton (1994) go on to show that in the infinite-wavelength case, the 

secularity condition (3.15) with rn = 1 can be recovered by using suitable approxi- 
mations. This also holds true for the periodic case, when rn # 1, but the integration 
limits must be changed as well to fK(m)/ic(T'). Therefore no intermediate matching 
regions have been neglected between the weakly and fully nonlinear situations. 

We now prove that the waves tend to a limiting amplitude. One half of the 
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secularity condition gives 
L 

J = - lL ha2 d i  

= 4 R L L  [c2(l - 40)2 +p:(&)] (1 - &)2h(&)di. (4.26) 

The sign of J depends on the sign of the terms in square brackets in the integrand. 
From the definition of pJ4) in (2.4) and PO in (2.9), we have 

(1 - 80),  

But 
2 60 Po = a. - F-  

4 0  
from (2.10). Thus we need to consider the sign of 

(4.27) 

A 

When c = ao, 4o = 40, in the uniform state, H is positive. However, when c = 0, H is 
negative for all 8o as a. is O(1) and F << 1. Thus as the wave grows and c decreases, 
the integral J changes sign. 

The other half of the secularity condition is 
L 

J = s_, llal d i  

as $0 = &(c(T') ,[) .  Initially, cT, < 0 as c is decreasing so 

(4.28) 

(4.29) 

as J is positive. Letting c + 0, cT,  must change sign if I remains negative. A proof 
that I is indeed negative as c + 0 is sketched in Appendix B. Thus, there is a value 
of c such that cT' = 0 and, therefore, the wave equilibrates at this velocity, with 
corresponding values of 41 and +u.  

5. Discussion 
We now briefly consider the case of dilute suspensions before going on to compare 

our results with numerical work by Needham & Merkin (1986) and Anderson et al. 
(1995). 

Firstly then, we set PO < 0 , so 
n 

4 0  > -2  
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which is appropriate for hindered settling. Here, the particles in a suspension fall out 
under gravity, with the drag coefficient being dependent on particle concentration. 
Thus, if more particles are present, the drag force on each one is higher, so that the 
settling rate is lower than might be expected. This is essentially the same phenomenon 
as in fluidized beds, but in a different reference frame. 

The change in sign of PO initially has little effect on the periodic case, but dramat- 
ically alters the situation when the infinite-wavelength soliton solution of the KdV 
equation is considered. Then, the soliton is inverted so that we have a more con- 
centrated wave propagating in a dilute suspension, rather than a less concentrated, 
high voidage wave in a dense bed. In fact any high voidage regions in the dilute 
suspension will be quickly dispersed, according to standard KdV theory (see Drazin 
& Johnson 1989). Thus only waves of higher particle concentration can propagate. 

The intial growth rate, ICT = b(rn)lc3, does not depend on PO, so this is left unaltered. 
However, the growth rate at larger times in (3.13) is changed since d is not independent 
of Po, and a new graph of d(m) in this situation is shown in figure 7. We have taken 
4o = 0.7 as a typical value, with n = 3 as before. Thus d(m) < 0 for all values of 
rn, and so stabilization of both the cnoidal wave solutions and solitons occurs at the 
weakly nonlinear stage. 

Needham & Merkin (1986) examine the existence of quasi-steady periodic voidage 
waves, using the same model equations as in this paper. The suggestion, based on 
results from their earlier paper Needham & Merkin (1983), is that a weakly nonlinear 
initial disturbance evolves and restabilizes into a quasi-periodic state. Crighton (199 1) 
disagrees with their weakly nonlinear equation in the (1983) paper, which leads to 
shock discontinuties and instead derives the perturbed KdV equation. However, their 
suggestion of the restabilization into periodic waves is supported by our results in 
the previous two sections. 

Needham & Merkin (1986) numerically integrate the equations, looking for travel- 
ling wave solutions. Our evolving periodic waves correspond to their subcritical case, 
with c2 < Po and c decreasing giving an increasing amplitude. Their figures 4 and 5 
show that the wavetrains for 40 = 0.85 are of much smaller amplitude than those for 
+o = 0.55. This agrees with our results that for 4o > n/ (n+2)  2: 0.6 the waves remain 
weakly nonlinear, whereas for 4o < n / (n  + 2) the solutions evolve to become fully 
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nonlinear. They also predict that waves of short wavelength are stable whereas those 
with longer wavelengths are unstable which is again in agreement with our results. 

Anderson et al. (1995) numerically integrate a very similar set of equations for 
gas-fluidized beds, but in addition they allow the waves to evolve with time. They fix 
the period of the wave, which in our case would correspond to setting K(m)/rc to be 
constant. Thus, we would have 

K’(m)mT - - K T  - 
K (m)  K 

and so m must vary on the long timescale for growing waves. This is in contrast to 
our choice of fixing m. Despite this, certain comparisons with our results are possible. 

As an initial condition, Anderson et al. (1995) use a sinusoid of wavelength rc cm, 
with a background voidage of 4 0  = 0.43 and with perturbations of the order of f0.02. 
(NB Their notation is 4 for solid fraction, which is 1 - 4 here.) They then track 
the development of this wave over time until it assumes a state which propagates 
unchanged. During this evolution, the wave is found to decelerate and although it 
grows in magnitude, it only varies by 0.03 or 0.04 from the uniform state and so 
satisfies a weakly nonlinear criterion. 

The effect of commencing the integration with waves of longer wavelengths is 
qualititvely the same, but with the initial and final wave speeds being larger and 
the time taken to develop fully increasing. Also there is a significant increase in the 
highest voidages obtained and the wave now varies from -0.04 to +0.15 or more 
about the uniform state. Thus the voidage waves are much more pronounced and are 
fully nonlinear. 

Both our results and those of Anderson et al. (1995) predict that small perturbations 
from the uniform state grow initially but those of small wavelength stabilize at a 
weakly nonlinear state. Longer wavelengths continue to grow, however, and become 
fully nonlinear. We also agree that the waves slow down as they grow, as for fixed 
m, c1 becomes more negative with increasing K from (4.18). However, for fixed K 

and increasing m, c1 becomes less negative so that the wave speeds increase with 
wavelength. (See figure 6.) Increasing m also has the effect of increasing To in (3.10), 
as b(m) is a decreasing function of m. This results in a longer time taken to reach 
the finite-time singularity when a rescaling of the equations is necessary. Therefore, 
a longer time is expected for the wave to obtain its final state. Thus there is very 
great agreement between our analytical results and the numerical results obtained by 
Anderson et al. (1995). 

We note that the final state of the numerically integrated solutions for the gas- 
fluidized situation in Anderson et al. (1995) is definitely not symmetric (although the 
corresponding results for liquid-fluidized beds are almost symmetric). The analysis in 
this paper cannot predict any antisymmetry as we have only been able to find the 
leading-order solution and any symmetry breaking will occur at higher order (as in 
the soliton case in Harris & Crighton 1994). However, the numerics by Needham & 
Merkin (1986) only show symmetric waves, so the discrepancy could be due to the 
small differences in the model equations (Anderson et al. 1995 retain the inertia terms 
and have a different functional form for the particle pressure). 

6. Conclusions 
We began with equations for the voidage fraction 4 and particle velocity v ,  which 

are appropriate for modelling gas-fluidized beds. Needham & Merkin (1983) showed 
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that the system is stable for all wavenumbers if the particle pressure PO is greater than 
the square of the linear wave speed a0 and unstable for wavenumbers 0 < k < k,  for 
some critical k,  if PO < mi. Thus only the longer wavelengths grow and to examine 
what happens we look for a weakly nonlinear equation. The system reduces to 
an unstable Burgers-Korteweg-de Vries equation for the voidage, with the Froude 
number F << 1 as the perturbation parameter. The coefficient of the Burgers term is 
proportional to Po - and so we choose this to be of O ( F )  so that the waves are only 
weakly unstable. Thus our system is a perturbed KdV one, with the leading-order 
perturbation being an amplifying Burgers term. Amongst the O ( F 2 )  terms are some 
which stabilize the short wavelengths as found in the linear analysis. An extra O ( F 2 )  
term omitted in Harris & Crighton (1994) is also given, although this does not affect 
the analysis in that paper. 

We examined the temporal development of a periodic wavetrain and as our initial 
condition selected a cnoidal wave solution of the KdV equation. To begin with, 
cnoidal waves of all 0(1) wavelengths are amplified, with the shorter wavelengths 
experiencing greater growth rates. However, other terms then become important and 
after rescalings, it was discovered that these stabilized the shorter wavelengths in a 
weakly nonlinear state. The longer wavelengths continued to grow and eventually 
became fully nonlinear. Necessary conditions were then found for quasi-stationary 
fully nonlinear waves to exist. The evolution of these was investigated and they were 
found to match back onto the growing weakly nonlinear solutions. It was also shown 
that the O( 1) waves equilibrate so that initial finite-time singularities found in the 
amplitude and velocity were in fact spurious and merely a limitation due to the level 
of approximation. 

Thus, we have analytically followed the evolution of periodic waves through from 
a small amplitude to final, fully nonlinear wavetrains. The results we found were 
in good qualitative agreement with numerical investigations by Needham & Merkin 
(1986) and Anderson et al. (1995). 

The author gratefully acknowledges the support of a Darby Fellowship at Lincoln 
College, Oxford for the period in which this research was carried out. 

Appendix A 
In this Appendix, we prove a general result about integrals of even powers of the 

Jacobian elliptic function cn. We use the definitions given in Abramowitz & Stegun 
(1964), so cn8 has a hidden parameter m, which can vary between 0 and 1, and a 
quarter-period K(m) .  

Firstly, we consider the integral 

d K 
cn28-(cn2"-'8 sn6'dnQ) d8, 

I = l K  d8 

and integrate by parts to yield 
K 

I = 2cn2"6 sn28 dn28 d8, 

as cn(+K) = 0. But we also note that the other Jacobian elliptic functions are related 
to cn8 by 

(A 3 )  2 sn28 = 1 - cn 8, dn28 = 1 - m + mcn28, 
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so that 

I = 2 s_", cn2"d[l - m + (2m - l)cn28 - mcn4B] do. (A 4) 

However, if we differentiate the cn2n-10 snd dnO term in (A 1) and use the identities in 
(A3), we also obtain 

2cn2"8[(2n + l)mcn48 + 2n(l - 2m)cn28 + (2n - l ) (m - l)] d%. (A 5 )  I = L  
Therefore equating (A 4) and (A 5 ) ,  we obtain the identity 

P K  

cn2"d[(2n + 3)mcn48 + (2n + 2)(1 - 2m)cn'H + (2n + l ) (m - l)] d8 = 0, (A6) .I_, 
and this holds for all m and for all n 3 0. 

Appendix B 
Here, we sketch a proof to show that 

is negative as c + 0. In the analysis which follows we drop the hat and the zero 
subscript on Jo for simplicity. 

Firstly, we examine the function 11(4). This is defined in (4.23) by 

with 

from (4.24) and (4.4). Thus 

using the definition of h ( 4 )  in (4.6). Integrating this expression and requiring I , ( & )  = 0 
for matching back to the weakly nonlinear scenario gives 

where we have now made explicit the dependence of 1, and h on c. Setting c = 0, we 
have 

($)"+I .  

A graph of 11 (4,O) is shown in figure 8, with n = 3 and 4o = 0.4. It can be seen that 
11(4,0) < 0 for 4 < 40 and is positive for 4 > 4o unless 4 is close to 1. But, we note 
that h'(4)  is positive for 4 < $0 and negative for 4 > (bo, with h ( 4 ~ )  = h(4,) = 0. 
Therefore integrating (4.6) taking 41 to be 0.27, the smallest possible value for which 
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FIGURE 8. The function li(&0) plotted against 4 

-2.0 

-2.5 

-3.0 

FIGURE 9. A graph of h(4,O) with the smallest zero of h taken to be 4l = 0.27 

the bed is fluidized, gives the largest value of 4u. From figure 9, this shows that the 
maximum 4u is approximately 0.6. Thus 11(4,0) > 0 in the range +o < + < +u.  

To find 4c, we start by writing (4.5) in the form 

Now differentiating with respect to c and rearranging gives 

where ’ denotes a +-derivative. The equation 
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results in 

Comparing this with (B 8) gives 

on using (B7) to replace 4:. Therefore, we have 

We also find from (B 8) that 

as 
dh 

h ( 4 , c )  - C - -  = h(4.O), 
r'c 

from the definition of h in (4.6). Thus integrating (B9)  yields 

and letting c -+ 0, we have 

where [o is such that 4(&,) = 40. We note that for 1 in [O,L], 4c < 0, so 
[ < l o ,  i.e. 4 > 4 0 ,  we have &I < 0, whereas for 1 > Co, i.e. 4 < &, then 
Combining this with the signs of 11 (4,O) in the relevant ranges shows that 

as c + 0. 
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